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ent times the dividing line (shown dashed in Fig. 1b) will be
connected with different boundary nodes. It then becomesA structured grid generator based on a new approximation of

Dirichlet’s functional is developed. An unconstrained minimization necessary to use a remapping procedure between grids of
process guarantees that all quadrilateral grid cells are convex at different structures, perhaps at every time step.
each iteration. Numerical results are presented in comparison with The Winslow method [4] and its different generalizations
those for the original form of the Winslow method. A generalization

for differential and variational formulation have been con-to the case of adaptive grids based on harmonic maps between
sidered in many papers [1, 2, 5–17]. Direct variationalsurfaces is considered. Q 1997 Academic Press

methods based on the minimization of particular discrete
functionals are proposed in [18, 19]. Unlike the preceding

INTRODUCTION methods the present algorithm guarantees the convexity
of all quadrilateral grid cells practically for any realistic

The problem of constructing two-dimensional grids will distortion of boundary lines while the number of grid nodes
be considered in the following standard formulation. A and the structure of the grid remain fixed. Other elliptic
grid G must be constructed for a domain V in the (x, y) grid generation methods give such a guarantee only if the
plane with given coordinates of the boundary nodes number of grid nodes tends to infinity [10, 29]. An algo-
(x, y)i1, (x, y)im, (x, y)1j , (x, y)nj such that rithm which overcomes this drawback has been proposed

[20], and is based on a constrained minimization of a finite-
G 5 h(x, y)ij , i 5 1, ..., n; j 5 1, ..., mj. difference function with Lagrangian multipliers as addi-

tional independent variables. Herein, an alternative algo-
rithm which solves the unconstrained minimization prob-There are many approaches to the problem (see [1], for

example). If the given configuration of the boundary nodes lem for a function dependent only on the coordinates of
the grid nodes is described. As a result, the computationalis such that coordinate lines of the grid must not be bent

strongly, then as a rule all algorithms produce quite satis- cost of the algorithm is comparable with that for other
elliptic grid generation methods.factory grids. This is not the case if the coordinate lines

must be bent considerably to generate a satisfactory grid. All grid cells are convex at each iteration of the minimi-
zation process. This is very important in time-dependentIn extreme cases most algorithms begin to generate grids

which contain self-intersecting cells and are therefore un- problems with moving boundaries when the number of
iterations cannot be large because the grid must be con-suitable for computations. For many applications, such a

difficulty can be overcome by constructing block grids structed at each time step.
The unconstrained minimization algorithm [21, 22] haswhen the grid at each block has its own structure (see [2]

and a number of papers from [3], for example). Even so, been used in the simulation of cumulative jets [23, 24] and
flows in basins [25] with very complicated boundaries forfixed block grids are often unsuitable for moving block

interfaces or boundaries. For example, we consider a prob- about 10 years. This paper presents a detailed account of
the unconstrained minimization algorithm, and its general-lem of grid generation encountered when simulating cumu-

lative jet propagation into a conical target which is por- ization to the case of adaptive grids.
The method is described in detail in Section 1. Numericaltrayed schematically in Fig. 1a. The dashed lines show

positions of an interface between two substances at differ- results are discussed in Section 2. Examples from computa-
tions of real-world problems are presented, where the orig-ent times. A typical domain for grid generation is illus-

trated in Fig. 1b. Clearly, the domain can be easily divided inal Winslow method generates grids with self-intersecting
cells while the method presented generates quite satisfac-into two blocks in such a way that it is straightforward to

generate a grid in each block. Nevertheless, a fixed block tory grids consisting only of convex cells. An adaptive grid
generator with the same property is described in Sectionapproach is unsuitable for computations because, at differ-
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Consequently, in the discrete case for the grid G the
discrete analog of the Jacobian positiveness must be also
imposed. However, it is not obvious how to approximate
inequalities (1). For example, this question is discussed
in [10] where it is shown that in some cases the usual
approximations of (1) are unsuitable.

The condition of the grid cell convexity was introduced
in [20] as a discrete analog of the Jacobian positiveness.
We will follow here the paper [22] where the mapping

FIG. 1. Cumulative jet propagation into a conical target. (a) Positions x(j, h), y(j, h) was approximated by quadrilateral finite ele-
of the interface between two substances (dashed line) at different times

ments.t3 . t2 . t1; (b) a typical grid generation region for the upper substance.
Let the coordinates (x, y)i, j of grid nodes be given. To

construct the mapping xh(j, h), yh(j, h) of a parametric
rectangle onto the domain V such that xh(i, j) 5 xi, j and

3. The high reliability of an adaptive grid generator is the yh(i, j) 5 yij we use quadrilateral isoparametric finite ele-
necessary condition for its successful application since the ments [26]. The square cell numbered i 1 1/2, j 1 1/2 on
grid lines must also be bent strongly to adjust the singulari- the plane j, h is mapped onto the quadrilateral cell on the
ties of numerical solutions. plane x, y, formed by nodes with coordinates (x, y)i, j ,

(x, y)i, j11, (x, y)i11, j11, (x, y)i11, j .
1. CONVEX GRID GENERATOR The cell vertices are numbered from 1 to 4 in a clockwise

direction. The node (i, j) corresponds to vertex 1, node
The problem of grid generation can be treated as a (i, j 1 1) to vertex 2, and so on. Each vertex is associated

discrete analog of the problem of finding functions x(j, h) with a triangle: vertex 1 with n412, vertex 2 with n123, and
and y(j, h), producing one-to-one mapping of the paramet- so on. The doubled area Jk, k 5 1, 2, 3, 4, of these triangles
ric square is introduced as

0 , j , 1, 0 , h , 1 Jk 5 (xk21 2 xk)(yk11 2 yk) 2 (yk21 2 yk)(xk11 2 xk),

onto a domain V. where one should put k 2 1 5 4 if k 5 1, k 1 1 5 1 if
Instead of the parametric square on the plane j, h the k 5 4.

parametric rectangle is often introduced to simplify the Functions xh, yh for i # j # i 1 1, j # h # j 1 1 are
computational formulas represented in the form

1 , j , n, 1 , h , m. xh(j, h) 5 x1 1 (x4 2 x1)(j 2 i) 1 (x2 2 x1)(h 2 j)

1 (x3 2 x4 2 x2 1 x1)(j 2 i)(h 2 j), (2a)This rectangle is associated with the square grid (ji, hj) on
the plane j, h such that ji 5 i, hj 5 j, i 5 1, ..., n; j 5 1, yh(j, h) 5 y1 1 (y4 2 y1)(j 2 i) 1 (y2 2 y1)(h 2 j)
..., m.

1 (y3 2 y4 2 y2 1 y1)(j 2 i)(h 2 j). (2b)It can be shown that if a smooth mapping of one domain
onto another with one-to-one mapping between bound-

Each side of the square is linearly transformed onto thearies possesses a positive Jacobian, then such a mapping
appropriate side of the quadrilateral. Consequently, thewill be one-to-one.
global transformation xh, yh is continuous on the cellHence, the curvilinear coordinate system constructed in
boundaries. To check the one-to-one property of the trans-domain V will be non-degenerate if the Jacobian of the
formation (2) we write out the expression for the Jacob-mapping x(j, h), y(j, h) is positive:
ian [26]

J 5 xj yh 2 xh yj . 0. (1)
J h 5 xh

j yh
h 2 xh

h yh
j

Thus, the problem of constructing the curvilinear coordi-
nates in the domain V can be formulated as the problem 5 det Sx4 2 x1 1 A(h 2 j) x2 2 x1 1 A(j 2 i)

y4 2 y1 1 B(h 2 j) y2 2 y1 1 B(j 2 i)
D ,

of finding the smooth mapping of a parametric square onto
the domain V, which satisfies the condition of the Jacobian
positiveness. The mapping between boundaries must be where A 5 x3 2 x4 2 x2 1 x1, and B 5 y3 2 y4 2 y2 1

y1. The Jacobian is linear, not bilinear, since the coefficientone-to-one.
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before jh in this determinant is equal to zero. Conse- ered by Roache and Steinberg [10], who noted that all
usual approximations of (5) ensure a minimally acceptablequently, if J h . 0 in all corners of the square, it does not

vanish inside this square. In corner 1 (j 5 i, h 5 j) of cell grid, with no folding, only if n, m R y. The presence of
the inverse Jacobian in the integrand of (5) should bei 1 1/2, j 1 1/2 the Jacobian J h(i, j) 5 (x4 2 x1)(y2 2 y1) 2

(y4 2 y1)(x2 2 x1), i.e., J h(i, j) 5 J1, is the doubled area assumed as the main factor entailing one-to-one mapping,
whereas usually this is not taken into account when approx-of the triangle n412, introduced above.

From this follows that the condition of the Jacobian imating the Euler equations for the grid generation. The
present algorithm is based on a particular approximationpositiveness xh

j yh
h 2 xh

h yh
j . 0 is equivalent to the system

of inequalities whereby the minimum ensures all grid cells to be convex
quadrilaterals and guarantees no folding for the given val-
ues of n and m. In its implementation the peculiarity of[Jk]i11/2, j11/2 . 0,

(3) vanishing the Jacobian when the one-to-one property is
k 5 1, 2, 3, 4; i 5 1, ..., n 2 1; j 5 1, ..., m 2 1. lost can be used explicitly.

Here we will approximate the functional itself rather
If conditions (3) are satisfied, then all the grid cells are than the Euler equations. The mapping x(j, h, y(j, h) is

convex quadrilaterals. The set of grids satisfying these in- approximated by the functions xh(j, h), yh(j, h) introduced
equalities is called a convex grid set and denoted by D. in (2). Substituting these expressions into (5) and replacing
This set belongs to the Euclidean space RN, where N 5 integrals over square cells by the quadrature formulas with
2(n 2 2)(m 2 2) is the total number of degrees of freedom nodes coinciding with the grid vertices on the plane j, h
of the grid equal to double the number of its internal nodes. [26], the following discrete analog of (5) can be obtained:

Finally the problem is formulated as follows. The convex
grid, satisfying inequalities (3), must be constructed in the
domain V for the given coordinates of the boundary nodes. I h 5 On21

i51
Om21

j51
O4
k51

1
4

[Fk]i11/2, j11/2 , (6a)
The method of grid generation guaranteeing the one-

to-one mapping on the continuous level was proposed by
Winslow [4]. Two families of grid lines are constructed as where Fk is the integrand evaluated in the kth grid node,
contours of harmonic functions j(x, y), h(x, y) satisfying
two Laplace’s equations Fk 5 [(xk11 2 xk)2 1 (xk 2 xk21)2 1 (yk11 2 yk)2

(6b)
1 (yk 2 yk21)2]J 21

k ,Dj 5 0, Dh 5 0,

and Jk is the doubled area of the triangle introduced above.with Dirichlet’s boundary conditions. After transforming
Consider several properties of the function (6). Recallto independent variables j, h, these equations take the

that the parametric rectangle 1 , j , n, 1 , h , m wasform
introduced to simplify computational formulas. In order
to consider the approximative properties of the functionaxjj 2 2bxjh 1 cxhh 5 0, ayjj 2 2byjh 1 cyhh 5 0, (4)
(6) we should introduce the parametric rectangle 0 , j ,
1, 0 , h , a, where a 5 (m 2 1)/(n 2 1) is the constant,where a 5 x2

h 1 y2
h, b 5 xj xh 1 yj yh, and c 5 x2

j 1 y2
j . The

instead of the unit parametric square as a domain of inte-standard approximation of (4) using centered differences
gration in (5). In this case the continuous limit of thefor the first-order derivatives will be referred to as the
expression I h/(n 2 1)2 when n, m R y in such a way thatoriginal form of the Winslow method.
(m 2 1)/(n 2 1) 5 a 5 const will be the functional (5).Equations (4) are the Euler–Lagrange equations for

It is easy to obtain the identitythe functional

I 5 E [(=j)2 1 (=h)2] dx dy

(5) I 5 E1

0
Ea

0

x2
j 1 y2

j 1 x2
h 1 y2

h 2 2(xj yh 2 xh yj)
1 2(xj yh 2 xh yj)

J
dj dh

5 E x2
j 1 y2

j 1 x2
h 1 y2

h

J
dj dh

5 E1

0
Ea

0

(xj 2 yh)2 1 (xh 2 yj)2

J
dj dh 1 2a.

used by Brackbill and Saltzman [9]. They added to (5)
other functionals and approximated the Euler–Lagrange
equations of the total functional by finite differences. Here, From this follows that the functional (5) has a lower bound

equal to 2a. If this minimum is attained, the mappingwe will approximate the functional itself rather than the
Euler–Lagrange equations. This approach was also consid- is conformal:
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xj 5 yh, xh 5 2yj . grid always remains convex. Note that in the common case
the discrete grid generation equations (7) can have multiple
solutions, but we have not met this difficulty in our numeri-To obtain the corresponding property of the discrete
cal experimentation.analog (6) of the functional (5) consider one term in (6)

We first consider a method of minimizing the functionfor k 5 2. We can assume that x2 5 0 and y2 5 0 since (6b)
(6) assuming that the initial grid G0 [ D has been found.contains only finite differences of grid node coordinates. In
Suppose that the grid at the lth step of the iterations isthis case we can obtain the similar identity
determined. Following Brackbill and Saltzman [9], we use
the quasi-Newtonian procedure when the (l 1 1)th step
is accomplished by solving two linear equations for each

F2 5
x2

1 1 y2
1 1 x2

3 1 y2
3

x1 y3 2 x3 y1
5

x2
1 1 y2

1 1 x2
3 1 y2

3 2 2(x1 y3 2 x3 y1)
1 2(x1 y3 2 x3 y1)

x1 y3 2 x3 y1
interior node

tRx 1
Rx

xi, j
(xl11

i, j 2 xl
i, j) 1

Rx

yi, j
(yl11

i, j 2 yl
i, j) 5 0

(8)

5
(x1 2 y3)2 1 (x3 1 y1)2

x1 y3 2 x3 y1
1 2.

From this follows that the function I h/(n 2 1)2 has on the tRy 1
Ry

xi, j
(xl11

i, j 2 xl
i, j) 1

Ry

yi, j
(yl11

i, j 2 yl
i, j) 5 0,

set D a lower bound equal to 2(m 2 1)/(n 2 1). If this
minimum is attained, coordinates of the grid nodes satisfy

where t is the iteration parameter. Note that (8) is notthe discrete analog of conformal conditions
the Newton–Raphson iteration because only a part of the
second derivatives of (6) is taken into account. The ratex1 5 y3, x3 5 2 y1.
of convergence for (8) is low by comparison. At the same
time the Newton–Raphson method gives a much more

If these conditions are satisfied for all cells, each grid cell complex system of linear equations at each iteration.
will be a square. Each of the derivatives occurring in (8) is the sum of 12

Note that the function (6) is not convex and, in principle, terms, in accordance with the number of triangles con-
multiple solutions can exist. taining the given node as a vertex. Rather than write out

Function I h possesses the following very important prop- such cumbersome expressions, we considered the first and
erty. If G R D for G [ D, where D is the boundary of second derivatives of the terms in (6),
the set of convex grids D, i.e., if at least one of the quantities
Jk tends to zero for some cell while remaining positive,
then I h(G) R 1 y. In fact, suppose that Jk R 0 in (6b) Fk

xk21
5 2

xk21 2 xk

Jk
2 Fk

yk11 2 yk

Jk
, (9)

for some cell, but I h does not tend to 1y. Then the numer-
ator in (6b) must also tend to zero; i.e., the lengths of two

and so on. Arrays storing the derivatives of the functionsides of the cell tend to zero. Consequently, the areas of
(6) were first cleared, and then all grid triangles wereall triangles that contain these sides must also tend to zero.
scanned and the appropriate derivatives added to the rele-Repeating the argument as many times as necessary, we
vant elements of the arrays.conclude that the lengths of the sides of all grid cells,

Now we consider an algorithm for the choice of theincluding those at the boundary of the domain, must tend
iteration parameter t in (8), which was used only for prob-to zero, which is impossible.
lems with moving boundaries. Recall that the minimizedNote that a discrete functional for triangle meshes with
function (6) has an infinite barrier on the boundary of thethe same property was considered in [27].
set of convex grids D. Since the initial grid G0 [ D, theThus, if the set D is not empty, the system of alge-
iteration (8) gives, as a rule, a convex grid for any t , 1.braic equations
But in extreme cases when G0 is very close to the boundary
of the set D, the grid G(t) can cross the boundary of the

Rx 5
I h

xij
5 0, Ry 5

I h

yij
5 0,

(7)
set in the first iterations (8). Clearly, such condition is fatal
for the method because the same barrier on the boundary

i 5 2, ..., n 2 1; j 5 2, ..., m 2 1, of the set D does not allow the iterations to return to the
set D in the following iterations. To avoid this, a certain
basic parameter t0 is chosen so that G(t0/2) [ D andhas at least one solution which is a convex grid. To find

it, one must first find a certain initial grid G0 [ D, and then G(t0) [ D. In the beginning t0 5 1. If the above-mentioned
conditions are violated, we put t0 5 1/4 or t0 5 1/2, de-use some method of unconstrained minimization. Since the

function (6) has an infinite barrier on the boundary of the pending on whether the grids G(t0/2) or G(t0) leave the
set D, and so on.set D, each step of the method can be chosen so that the
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In fixed boundary problems we use the simple choice nodes for minimizing (10) were taken from the previous
time step. As a result, the initial grid is either alreadyt 5 const ? t0. For time-dependent problems with moving

boundaries a version of the method of parabolas was devel- convex or such that a convex grid is obtained after a few it-
erations.oped. We choose the squared residual of Eqs. (7)

In fixed boundary problems, the starting grid (generated
by another method, for example, by the Winslow method)W 5 O

i, j
(R2

x 1 R2
y)i, j

is often essentially nonconvex, containing numerous self-
intersecting cells. In such cases the preliminary stage of

as the controlling quantity. The reason for such choice will the method based on minimizing (10) can be unsuitable.
be discussed at the end of Section 2. The parabola W(t) Therefore another approach has been developed [28]. The
is constructed from the grids obtained for t 5 0, t 5 t0/2, computational formulas (8) are modified so that the initial
and t 5 t0. The parameter t is then chosen so that W(t) 5 grid need not belong to the set of convex grids D. The
min in the interval ut # t # at0. The parameter u p 0.1 quantities Jk appearing in the expressions for Rx, Ry and
is given a priori and bounds the value of t away from zero. their derivatives are replaced with new quantities J̃k

The parameter a bounds t above, i.e., prevents a very large
extrapolation along the parabola. If t0 5 1, i.e., if the
boundary of the set D is not crossed, we put a 5 2. If t0 , J̃k 5 HJk if Jk . «,

« if Jk # «,1, then a 5 1. Finally, if the algorithm gives t , t0/2, the
condition I h(t0/2) , I h(0) is checked. In cases when this
condition is found to be valid, we put t 5 t0/2. where « . 0 is some sufficiently small quantity.

For one iteration of the above method a measurement It is quite important to choose an optimal value of « so
of the computational cost gives the value of about double that the convex grid is constructed as fast as possible. The
(but not three times) the cost of the simple iteration. The method used for specifying the value of « is based on the
reason is that the second derivatives of the function (6) computation of the absolute value of the average area of
are not used in calculating W while they are used in (8) triangles with negative areas
for calculating the direction of minimization. Comparative
properties of the simple iterations and the method of pa-

« 5 max[aS/(N 1 0.01), «1],rabolas will be discussed for a certain example at the end
of Section 2.

In all our computations the iterative process has been where S is double the absolute value of the total area of
observed to have the following properties. If the initial triangles with negative areas, and N the number of these
grid is far from the solution of (7), then the grid nodes move triangles. The quantity «1 . 0 sets a lower bound on « to
quite rapidly during the first iterations and the residual of avoid very large values appearing in the computations. The
(7) decreases rapidly. Later on the rate of convergency may coefficient a is chosen experimentally and is in the range
fall, but the iterative process may be interrupted before 0.3 # a # 0.7.
reaching full convergency and the resulting grid will be In practical implementation, an arbitrary set of grid
necessarily convex. nodes can be marked as movable during iterations, while

The algorithm described above can be used only if the all other nodes are considered stationary. All the terms in
initial grid is convex. Otherwise, it is necessary either to the function (6) which become independent on movable
obtain a convex grid by another algorithm as a preliminary nodes are excluded from computations. Since the boundary
stage of the method or to modify the computational formu- nodes are always marked as stationary, four terms in (6)
las. The first approach is based on the minimization of corresponding to ‘‘corner’’ triangles {(1, 2); (1, 1); (2, 1)},
the function {(n 2 1, 1); (n, 1); (n, 2)}, {(1, m 2 1); (1, m); (2, m)}, and

{(n 2 1, m); (n, m); (n, m 2 1)} are always excluded from
computations. As a result, the method becomes applicable

ID 5 On21

i51
Om21

j51
O4
k51

([« 2 Jk]i11/2, j11/2)2
1 ,

(10)
to those domains for which the angle between two inter-
secting boundaries is greater than or equal to f, despite

( f )1 5 max(0, f ), the fact that the corresponding grid cell becomes non-
convex independent of the positions of the interior nodes
(see Fig. 2).for some given « . 0. This is accomplished by the gradient

method with a suitable choice of iteration parameter. The We use two approaches to control the distribution of
nodes. The first one was taken from [9] and was used foriterative process is broken off as soon as all inequalities

(3) are satisfied. This method was used for problems with attracting the grid lines to boundaries (see [22]). Let us
consider the functionmoving boundaries [23, 24] when the initial interior grid
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[7] with two deep folds at opposite boundaries. Figure 3
presents the grids generated by the original Winslow
method and the Winslow-type method [8] with control
functions evaluated automatically from boundary point
distributions. It is shown that both grids contain overlap-
ping cells near the corners. The attempt to multiply the
control functions from [8] by a factor of 4 turns out to be
also unsuccessful (see Fig. 3c). The grid cells near the folds
are not improved even when the number of grid nodes is

FIG. 2. Example of a domain with such correspondence of boundary increased four times in each direction.
nodes that the corner cell is always nonconvex. The present method generates the quite satisfactory grid

shown in Fig. 4a. Figure 4b shows an initial grid constructed
using straight lines and containing self-intersecting cells.
After minimization of the function (10), the grid shown inLh(G) 5 I h(G) 1 O

i, j
fijsij ,

Fig. 4c was obtained. Although it looks extremely unsatis-
factory, it is in fact a convex grid and this is all that is
demanded from the initial grid for the basic algorithm ofwhere fij are the elements of the control array and sij are

the areas of the cells. Clearly, this function possesses the minimization of the function (6).
Figure 5 presents a block of a grid utilized in the simula-same properties as I h, i.e., Lh(G) R 1y as G R D,

G [ D. Therefore, the above-described algorithm can be tion of a cumulative jet. The grid generated by the original
Winslow method is shown in Fig. 5a. The enlargementalso used for the function Lh(G).

Another approach based on the minimization of a single shows the section of the grid in which self-intersecting cells
occur. Figure 5b shows the grid generated by the presentfunctional will be considered in Section 3.
method. It consists only of convex cells.

An example of a domain with a rather complicated2. NUMERICAL EXAMPLES
boundary (Lake Mendota) is presented in Figs. 6a (the
original Winslow method) and 6b (the present method).The unconstrained minimization process presented

herein can be treated as a special form of the Winslow The enlargement shows one of the sections where the un-
constrained minimization method corrects the grid gener-method because the algebraic equations (7) are the second-

order finite-difference approximations to the Euler– ated by the original method of Winslow. Here an initial grid
contains numerous self-intersecting cells. The preliminaryLagrange equations for the functional (5) (the proof of

this fact is omitted). Consequently, results from the uncon- minimization of (10) becomes unsuitable while the compu-
tational cost of the modified formulas (8) turns out to bestrained minimization of the function (6) will be compared

with those from the original form of the Winslow method. quite acceptable.
The numerical algorithm for the latter is taken from [5,
29]. Particular consideration will be given to examples
where the original Winslow method generates grids with
self-intersecting cells. One may correct these grids with
control functions on the right-hand sides of Eqs. (2) [1, 5,
8] or on the left-hand sides by means of a diffusion coeffi-
cient [12, 14, 17, 36]. However, it is not a simple task. To
demonstrate this, we present one example for the method
[8] with control functions evaluated automatically from
boundary point distributions.

In general, the original Winslow method is more eco-
nomical computationally (the computational cost of the
present method is approximately seven times the cost of
the Winslow method) partly because the number of terms
in (6) is almost four times the number of grid nodes and
so should be used for meshing until self-intersection cells
occur. The present method then becomes very useful for
such cases when grid lines must be bent strongly to gener- FIG. 3. Folded grids constructed by the Winslow-type methods. (a)
ate a satisfactory grid. The original Winslow method; (b) the method from [8]; (c) the method

from [8] with control functions multiplied by a factor of 4.First we discuss numerical results for a domain from
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where s ij has the same order of magnitude as separate
terms occurring in (Rx)ij and (Ry)ij . Recall that

(Rx)ij 5 O
s

(as 1 bs), (Ry)ij 5 O
s

(cs 1 ds),

where the subscript s corresponds to triangles containing
the node (i, j) as a vertex; a, b, c, and d have the form
shown in (9). We use s ij in the form

s ij 5 O
s

Ï(uasu 1 ubsu)2 1 (ucsu 1 udsu)2.

The functions I h, W and D 5 max(dij) against the itera-
tion number are presented in Fig. 9 both for the simple
iterations with t ; 0.5, t ; 0.8 and for the method of
parabolas from Section 1. The basic parameter of the
method t0 5 1 for all iterations. There is no convergence
in the case of t ; 1. As one would expect (see Figs. 8a
and 8b), the method of parabolas gives somewhat smaller
values of I h and W in comparison with the simple iterations
for the same value of the iteration number.

If the function I h is used as the controlling quantity inFIG. 4. Grid constructed by the present method. (a) Final grid; (b)
initial grid; (c) convex grid after minimization of (10). the method of parabolas instead of W, the dependence of

I h against the iteration number remains almost the same;

The following example was taken from the computation
of a high-velocity impact of a thin foil upon a conical target
[30]. The original shape of the foil on the radial–axial
coordinates is a thin quadrilateral, shown in Fig. 7a. The
grid used in the computations has a routine structure with
the points A, B, C, and D as corner nodes. Figure 7b shows
the shape of the foil within a certain time following the
impact. For the domain from Fig. 7b, the present method
generates a convex grid which has the same structure as
the original grid for the domain from Fig. 7a. Figure 8
shows a fragment of this grid in the vicinity of a point E
marked both in this figure and in Fig. 7b.

The last example was also used to compare variants of
the method with different choices of the iteration parame-
ter t. Consider the grid generation technique for the prob-
lem in more detail. To construct the grid at each time step,
we first determine positions of boundary grid nodes. The
interior nodes are calculated by the linear interpolation
for the undeformed part of the foil (the left part of the
domain in Fig. 7b) while the present method is used only
for another part. For the domain shown in Fig. 7b the last
part of the grid consists of about 4000 cells. The grid from
the previous time step was used to construct the initial
grid. As a result the initial grid turns out to be convex.

Besides the minimized function I h and the total squared
residual W, consider the local scaled residual of Eqs. (7)

FIG. 5. A grid block for computation of a cumulative jet. (a) The
dij 5 Ï(Rx)2

ij 1 (Ry)2
ij/s ij , Winslow method; (b) the present method.
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FIG. 6. Grids for Lake Mendota. (a) The Winslow method; (b) the present method.
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[17] derived an adaptive grid generator from a variational
formulation of Winslow’s diffusion method combined with
a directional control functional. The theory of harmonic
maps was used in [17] to define the conditions under which
unique solutions of elliptic equations exist. In papers [16,
17] the grid was adapted in the domain of physical space
by prescribing a special metric in it.

We apply the theory of harmonic maps to a monitoring
surface approach [12] and develop a method for generating
quasi-uniform harmonic grids directly on the solution sur-
face. This grid is then projected onto the physical domain
and the result is an adaptive-harmonic grid. The first step in
this direction was made by Liseikin [31, 33], who obtained a
generalization of the functional (5) to the case of surfaces
and presented some examples of adaptive grids as numeri-FIG. 7. The domain from computation of a high-velocity impact of

a thin foil upon a conical target [30]; A, B, C, and D are the corner grid cal solutions of the corresponding Euler–Lagrange equa-
nodes. (a) The original domain; (b) within a time following the impact. tions. In the present paper we obtain the same functional

from the theory of harmonic maps (see also [33]).
First we present some common definitions from the sur-

vey by Eells and Lemaire [32]. The energy density of ahowever, the dependence of W becomes substantially non-
map f: (M, g) R (N, h) between Riemannian manifoldsmonotonic (see Fig. 9c).
(surfaces) M and N with metrics g and h is the functionIn view of the computational cost of the method of
e(f): M R R($0), defined in local coordinates j i, ea asparabolas, the simple iterations with t ; 0.8 turn out to

be preferable for decreasing the functions I h and W down
to given values. At the same time the method of parabolas e(f)(j) 5 gij(j)

fa(j)
j i

f b(j)
j j hab(f(j)), (11)

turns out to be preferable for decreasing the function
D 5 max(dij) as it is shown in Fig. 9d. Moreover, the fact

where the standard summation convention is assumed, gijof the almost monotonic dependence of D against the
and hij are the elements of metric tensors g and h oniteration number in the case of the method of parabolas
manifolds M and N, and gij is the inverse metric:can be used to construct a reliable condition to terminate

the iterations. Namely, an additional parameter d is speci-
fied, and, if D # d, the iteration process is terminated.

gijgjk 5 d i
k 5 H1 if i 5 k,

0 if i ? k.3. ADAPTIVE-HARMONIC GRID GENERATOR

This means that if gij are the elements of matrix g, thenDvinsky [16] was the first to suggest using the theory of
gij are the elements of the inverse matrix g21.harmonic maps for constructing adaptive grids. Brackbill

The generalization of Dirichlet’s functional is called the
energy of f and is defined as

E(f) 5 E
M

e(f)(j) dj,
(12)

where dj 5 Ïdet(g) dj 1 ??? dj n.

A smooth map f: (M, g) R (N, h) is harmonic if it is
an extremal of the energy functional E.

Here we consider the case when M is an n-dimensional
surface in the Euclidean space Rn1r, dim M 5 n, and N is
a unit cube 0 , ei , 1, i 5 1, ..., n in Rn. The Euclidean
metric in Rn is hab 5 dab . Local coordinates j i and ea are
the same in this case, and (11) can be simplified to give

FIG. 8. The fragment of the grid in the vicinity of the point E marked e(f)(j) 5 gij j a

j i

j b

j j dab 5 gijdij 5 gii 5 Tr(g21).
also in Fig. 7b.
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FIG. 9. Functions against the iteration number. (a) I h: t ; 0.5, t ; 0.8, and the method of parabolas (MP); (b) W: t ; 0.5, t ; 0.8 and MP;
(c) W: MP with I h as the controlling quantity; (d) D 5 max(dij): t ; 0.8 and MP.

So, the energy functional (12) will be g11 5 r2
j 5 x2

j 1 y2
j 1 z2

j ,

g12 5 g21 5 (rj ? rh) 5 xjxh 1 yjyh 1 zjzh ,

E(f) 5 E
M

gii(j) dj

(13)
g22 5 r2

h 5 x2
h 1 y2

h 1 z2
h ,

g11 5 g22/det(g), g22 5 g11/det(g),
5 E1

0
? ? ? E1

0
Tr(g21)Ïdet(g) dj 1 ? ? ? dj n.

g12 5 g21 5 2g12/det(g),

The harmonic mapping in this case gives harmonic coor- where rj 5 (xj , yj , zj)T and rh 5 (xh, yh, zh)T.
dinates on the surface. According to the Hamilton–Shoen– The functional (13) takes the form
Yau theorem [16, 17, 32] there exists a unique harmonic
map M R N, which is one-to-one, provided that N has

I 5 E1

0
E1

0
(g11 1 g22)Ïdet(g) dj dh

(14)
nonpositive curvature and convex boundary. These condi-
tions are obviously satisfied for the unit cube 0 , ei , 1,
i 5 1, ..., n in Rn. Hence, nondegenerate harmonic coordi- 5 E1

0
E1

0

r2
j 1 r2

h

J
dj dh,

nates may be constructed on surfaces.
The direct generalization of the Winslow method to the

case of two-dimensional adaptive grids is based on the where J 5 Ïdet(g) 5 [g11 g22 2 g2
12]1/2 5 [r2

j r2
h 2 (rj rh)2]1/2

is the Jacobian of the mapping.functional (13) written for a two-dimensional surface with
local coordinates j, h in three-dimensional space (x, y, z). Let the surface be defined as z 5 f(x, y), where f [ C 1.

The expression for the Jacobian will beIn this case
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J 5 (xj yh 2 xh yj)(1 1 f 2
x 1 f 2

y)1/2. from Section 1 can be repeated, being applied to func-
tion (15).

As before, Eqs. (8), described in Section 1 are used toSubstituting this expression into (14) with zj 5 fx xj 1 fy yj ,
minimize the function I h

a. Quantities ( fx)ij and ( fy)ij areand zh 5 fx xh 1 fy yh, we obtain the functional from [34]
assumed to be parameters and therefore all their deriva-
tives in (8) vanish. Note that if ( fx)ij and ( fy)ij vanish, the
function I h

a reduces to the function I h (6).
Ia 5 E1

0
E1

0

(x2
j 1 x2

h)(1 1 f 2
x) 1 (y2

j 1 y2
h)(1 1 f 2

y)
1 2fx fy(xj yj 1 xh yh)

(xj yh 2 xh yj)(1 1 f 2
x 1 f 2

y)1/2 dj dh. The adaptive grid generation algorithm is formulated
as follows:

1. Generate a quasi-uniform harmonic grid for theNow we again consider the grid (x, y)ij , i 5 1, ..., n; j 5
given domain using the unconstrained minimization algo-1, ..., m and, to simplify the computational formulas, the
rithm as described in Section 1.parametric rectangle 1 , j , n, 1 , h , m instead of the

unit square 0 , j , 1, 0 , h , 1. The functional Ia is 2. Compute the values of the control function at each
approximated by the function grid node. The result is fij .

3. Evaluate derivatives ( fx)ij and ( fy)ij using the
above formulas.I h

a 5 On21

i51
Om21

j51
O4
k51

1
4

[Fk]i11/2, j11/2 , (15a)
4. Make one step in the minimization process for the

function I h
a using Eqs. (8) and compute new values of xij

Fk 5
D1[1 1 ( fx)2

k] 1 D2[1 1 ( fy)2
k] 1 2D3( fx)k( fy)k

Jk [1 1 ( fx)2
k 1 ( fy)2

k]1/2 , (15b) and yij .

5. Repeat starting with Step 2 to convergency.
where

It is important that at each step of the iterative process
the grid remains convex.

D1 5 (xk21 2 xk)2 1 (xk11 2 xk)2, Note that the computational cost of the method is ap-
proximately 10 times the cost of the original WinslowD2 5 (yk21 2 yk)2 1 (yk11 2 yk)2,
method.

D3 5 (xk21 2 xk)(yk21 2 yk) 1 (xk11 2 xk)(yk11 2 yk), In many applications an adaptive grid must be con-
structed not only within a domain but also on its bound-Jk 5 (xk21 2 xk)(yk11 2 yk) 2 (xk11 2 xk)(yk21 2 yk).
aries. One can do it sequentially [31]: first on the bound-
aries using the corresponding form of the functional (13)Derivatives ( fx)k and ( fy)k in the kth cell vertex are equal
and then within the domain. Let s be the length of a bound-to the corresponding values of derivatives, evaluated in
ary curve and f(s) be a control function. The functionalthe grid node i, j
(13) written for a curve with a local coordinate j in two-
dimensional space (s, f) takes the form (see also [31])

( fx)ij 5

( fi11, j 2 fi21, j)(yi, j11 2 yi, j21)
2 ( fi, j11 2 fi, j21)(yi11, j 2 yi21, j)
(xi11, j 2 xi21, j)(yi, j11 2 yi, j21)
2 (xi, j11 2 xi, j21)(yi11, j 2 yi21, j)

,
I 5 E1

0

1
sj (1 1 f 2

s)1/2 dj.

The corresponding Euler–Lagrange equation

( fy)ij 5 2

( fi11, j 2 fi21, j)(xi, j11 2 xi, j21)
2 ( fi, j11 2 fi, j21)(xi11, j 2 xi21, j)

(xi11, j 2 xi21, j)(yi, j11 2 yi, j21)
2 (xi, j11 2 xi, j21)(yi11, j 2 yi21, j)

. sj (1 1 f 2
s)1/2 5 const

gives the grid s(j) as the projection of the uniform grid
along the curve f(s) [1, 35].These formulas must be modified for the boundary nodes.

This method is illustrated by the following example. TheIndices ‘‘leaving’’ the computational domain must be re-
square domain 0 , x , 1, 0 , y , 1 is considered. Theplaced by the nearest boundary indices. For example, if
cubic curvej 5 1, then (i, j 2 1) must be replaced by (i, j).

Function (15) possesses the same property as function
y0(x) 5 25(x 2 0.5)(x 2 0.75)(x 2 0.25) 1 0.5(6): I h

a(G) R 1 y if G R D for G [ D, where D is the
set of convex grids, and D is the boundary of the set. To
prove this, we first note that the numerator in (15b) is determines the form of a layer of high gradients. For a

given point x, y the function f(x, y) is calculated asbounded below with the numerator in (6b). Then the proof



396 CHARAKHCH’YAN AND IVANENKO

FIG. 10. Adaptive grid, control function (16), the half-width of the layer of high gradients d0 5 0.01.

Additional investigations on the adaptive grid generator
presented, particularly dealing with the accuracy of the

f 5 5
0.5 if y $ y0 1 d,

0.25(y 2 y0 1 d)/d if y0 1 d $ y $ y0 2 d,

0 if y # y0 2 d.

(16) solution of fluid flow equations, will be reported in the
near future.

CONCLUSIONSHere

Details of the two-dimensional structured grid generator
have been presented in this paper. The method guaranteesd 5 d0 F1 1 Sy0

xD2G1/2

.
that all quadrilateral grid cells are convex at each step of
the iterative process. Although other Winslow-type meth-
ods are more economical computationally and simpler inThe value of d is chosen so that the width of the layer will

be about 2d0 everywhere along the curve. implementation, the high reliability of the present method
allows us to recommend it for certain problems whichFigure 10 shows the 51 3 51 grid obtained for d0 5 0.01.

About a third of the grid nodes are within the layer which require grid lines to be bent strongly in order to obtain a
satisfactory grid.is very thin and strongly bent. Nevertheless all the grid

cells are convex. The enlargement in Fig. 10 shows that A generalization to the case of adaptive grids based on
harmonic maps between surfaces is also considered. Firstthe resolution of the layer of high gradients near the bound-

ary is the same as that inside the domain. numerical experiments show that the method may be useful
for problems with interior curves following a thin layer ofHowever, the grid shown in Fig. 10 has too large a varia-

tion in grid spacing and can be unsuitable for obtaining a high gradients as a control function.
The three-dimensional case is much more complicatedsufficiently accurate solution of the fluid flow equations.

This example is presented here to show the robustness of than the two-dimensional case, since the simple conditions
of Jacobian positiveness cannot be obtained for the trilin-the algorithm in extreme cases. To construct a grid which

is suitable for computations one should use control func- ear mapping of the unit cube onto a hexahedral cell. The
Jacobian of this isoparametric mapping in 3D may be zerotion (16) multiplied by a coefficient of less than 1. For

example, in Fig. 11 the grid obtained with control function or negative even when the eight-corner Jacobians are posi-
tive. Faces of hexahedrons are not planar and the notation(16) multiplied by 0.2 is shown. Variations in grid spacing

are not so large, but the number of grid nodes in the layer of convexity also cannot be used. This is why an approach
developed for two-dimensional meshes cannot be directlyof high gradients is less (Fig. 10) and so the resolution of

the layer is not so high as in the previous example. If in extended to the three-dimensional case. This question is
discussed in [37], where one of the possible approaches tothe common case x, y and control function f are scaled to

be in the range [0, 1], then the coefficient b before f can the problem is presented and a three-dimensional algo-
rithm with properties similar to the properties of the two-be introduced to control the number of grid nodes within

the layer of high gradients. dimensional algorithm presented herein is described.
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FIG. 11. Adaptive grid, control function (16), multiplied by 0.2.
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